Development of "Sharkavir": A Hypothetical Inhibitor for HIV-1 Protease

Matthew Hunt, Feza Abbas, Lyla Abbas, Mina Ghali, Helana Ghali, Alesa Chabbra, Emily Schmitt Lavin, Arthur Sikora

Research output: Contribution to journalMeeting abstract

Abstract

Human immunodeficiency virus (HIV) affects approximately 37 million people worldwide and results in over 1 million deaths annually. A class of drugs first developed in 1995 inhibits the enzyme HIV‐1 protease, thus preventing the maturation of an HIV precursor protein. There are now over 10 protease inhibitors available to treat HIV. Multiple mutations in the protein have made this treatment less effective. The CREST (Connecting Researchers, Educators, and STudents) team at Nova Southeastern University modeled the interaction between HIV‐1 protease and its competitive inhibitors. Darunavir is currently one of the strongest competitive inhibitors, as it binds effectively to the substrate envelope and has yielded a lower resistance for patients. The most effective treatment is a combination of two of these inhibitors: Darunavir and Ritonavir. In order to explain how these drugs work, the active site of the non‐mutated wild‐type HIV‐1 protease was depicted as a binding box model. The protease inhibitors Darunavir, Ritonavir, and our hypothetical drug, “Sharkavir” were 3D printed to show how they fit into the protease active site. Details of the wild‐type HIV‐1 protease, as well as the drugs Darunavir, and Ritonavir, were found in the Protein Data Bank files, 1T3R, 4DQF, and 1N49, respectively. Both structures were imported into Jmol: a protein visualization software. The new protease inhibitor molecule, “Sharkavir”, was designed as a combination of Darunavir and Ritonavir using Marvin Sketch: a software used to manipulate molecular structures. The molecular structure of the hypothetical drug “Sharkavir” is shown below.
Original languageAmerican English
Number of pages1
JournalThe FASEB Journal
Volume34
Issue numberS1
DOIs
StatePublished - Apr 20 2020
EventExperimental Biology - San Diego, United States
Duration: Apr 4 2020Apr 7 2020

Disciplines

  • Biology
  • Life Sciences

Cite this